E.I.Grigoliuk and V.M.Tolkachev

Sedov, L,I,, Plane Problems of Hydrodynamics and Aerodynamics, Moscow=
Leningrad, GOSTEKHIZDAT, 1950,

Gakhov, F,D,, Boundary Value Problems, 2d ed,, Moscow, FIZMATGIZ,
1963,

Whittaker, E, T, and Watson, G, N,, Modern Analysis, (Russian Tran-
slation) 2d ed,, Moscow, FIZMATGIZ, 1963,

Muskhelishvili, N,I,, Some Fundamental Problems of Mathematical Elas-
ticity Theory, 5th ed, Moscow, FIZMATGIZ, 1966,

Muskhelishvili, N,I,, Singular Integral Equations, 2d ed,, Moscow, F1Z-
MATGIZ, 1962,

Translated by M, D, F,

POST=BUCKLING BEHAVIOR OF A CLOSED SPHERIC AL SHELL

PMM Vol, 35, M5, 1971, pp, 840-847
M, Iu, ZHUKOV and L,S, SRUBSHCHIK
(Rostov-on-Don)

(Received May 31, 1971)

The question of new equilibrium modes of a uniformly compresses closed elastic
spherical sliell for loading values close to the critical one is considered for which
the membrane state of stress loses stability, The problem [1] reduces to cons-
tructing solutions branching off from the trivial solution in the neighborhood of
the bifurcation point, for the equations in {2], The investigation is carried out
by the Liapunov-Schmidt method for a broad class of operator equations in
Banach space [3],

The author of [4, 5] used the analytical Liapunov-Schmidt method earlier to
construct new equilfbrium modes in the case of plates and shallow shells, The
problem of the bifurcation of the trivial solution of a shallow spherical segment
by the Poincaré method was investigated in [6], where meridian stress resultants
in equilibrium with the uniformly distributed surface pressure are given on the
edge, whereupon a membrane equilibrium mode always exists, For the problem
of an uniformly compressed closed sphere when the spectrum is simple, the be-
havior of the solutions in the neighborhood of the bifurcation point has been
studfed in [7] numerically on a computer by using the method of "adjustment”,
The survey [8] is devoted to this same problem,

1, Formulation of the problem, The Reissner equations for axisymmetric

elastic deformation of a closed spherical shell subjected to uniformly distributed press-
ure {2] are considered in dimensionless form

&l {(cp — @) +ctg & (D — Dy) — %‘:T‘g-(sin ® —sin®dy) 4+ (1.1)

+}.§‘3é(cos®-—cos(bo)}= ! (Nsin® — T cos D)

sing

i 1
{N"-{-ctggN’—- (%’ﬁ-:;%!—-v@,' 3;—?;%’) N}= it {cos @ — cos D, +
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+ vsin @y T’ — (sin?Ep)’} + [&:’i‘;}’%‘i—& + v®,’ °:i’nq€°] T —vpcos®,

with the boundary conditions
NO=N@m=0 @@0=0 @& =n= 1.2)

Equations (1,1), (1.2) are obtained from (28), (29) in [2] if the influence of the trans-
verse shear is neglected and the following relationships are used
¥y 1 ¢ .
Vy=NRwEe, T=ppm= -———ﬁgqsxngdg Q=% a¢=R
0

Pg=pEve, p,=qEve, r= Rsint, z2=— Rcost

e=h/Ry, 7*=12(1 -+, p= —psint, g¢=pcost (1.9)

Here @ (E) is the angle which a shell element makes with the horizontal axis after
deformation at the point corresponding to t ; Wy, ¥y and pg, pv are, respectively,
the horizontal and vertical stress and loading components, E is the Young modulus, v
the Poisson ratio, & = const is the shell thickness, and R the radius of the sphere,

The problem (1,1), (1.2) has a trivial solution corresponding to the membrane state
of stress for any values of the loading p

D=t N=—1Yipsin2f (©O<Ei<n
Hence, it is convenient to make the substitution
O=p+8% N=vp—psin2§

Since the new equilibrium modes are sought close to the membrane mode, it is then
natural to assume the quantity f small and to neglect terms above the second order in
P in(1.1), (1.2). We hence obtain the equations

e{4p + (1 —v)B} + Yy 0 — ¥ =, eX(v — 3)B* ctgl +pBotg & —
— {4+ +vp}—p = Plotg §

Ag=¢q +ctgltqg —sin? g ¢ (g=8/%) (1.4)
with the boundary conditions
PO =Pp(@)=4p(0) =9 () =0 1.5)

A number of the solutions branching off in the neighborhood of the bifurcation points
of the problem (1.4), (1, 5) is determined below, and asymptotic expansions are con-
structed for each of them (Theorems 1 - 3), This number will fluctuate between zero
and three as a function of the multiplicity of the spectrum of the linearized problem,
Let us introduce the Hilbert spaces:
1) The space E, consisting of the closure of the set of smooth vector functions
z= B, P satisfying the boundary conditions (1. 5) with the finite norm

k3

fzfe, = | sin&((4B) + (4yp)1dt

0

2) The space K, of vector functions ¥ = (u,, U,) with the finite norm
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T

|ulE, = ‘S sin § [u,® 4 u,?1d§
0

Then the problem (1.4), (1.5) can be written in the form of the functional equation

Bz = D (2) (1.6)
Here B is a linear, and D (z) quadratic operator from E, and E,
5 [T+ 0, —1

Hyet (v —3)Bretg & + yBetg E|
i Y, B2%ctg § |
The possibility of writing the problem (1.4), (1, 35) in the form (1.6) follows from the
estimates

D(z)=

,nax [BI< M| 4B, gﬁ%ﬁ BlaE < M| AB[E,

These estimates follow from the analysis of the problem
Ap =, PO =B =0
written in entegral form, and the application of the Cauchy-Buniakowski inequality,

2, Investigation of the linearized problem, Let us consider the

linearized problem
Bz =0 2.1

in the neighborhood of the trivial solution z = (0, 0) of (1,6), The eigenfunctions
of the problem (2,1) are sought in the form

3= DaPit(cost), = bePy(cos}) (2.2)
k=1 k=1
Here P} (cos §) are the associated Legendre polynomials forming a complete orthonor-
mal system [9], To determine a,,, b, we substitute (2,2) into (2.1), multiply by
Pt (cos §), integrate with weight sin § between ( and -7 taking account of the
relationship
AP (cosE) = — k (k + 1) Pilicos E) (2.3)

and obtain the system

(& l—m(m-+1) +1—v] = p}ap — by =0 (2.4)
—am~[—m(m+1)+1 +V] bm——-O (m=1, 2,..}

Equating the determinant of the system (2.4) to zero for eachm, we obtain the eigen-
values of the problem (2,1)
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p=28m +m—14v)+2/(m +m—1—w) m=12..) (2.9)
We find the least eigenvalue

Pa = MiD (P, Py ) = 4€ + 4ve? (2.6)

for fixed € and v . Here [I] denotes the integral part of the number [ satisfying the

relationship
lz-i-l=8—l+1+"\’y l>0

It is seen that the eigennumbers p,, can be simple and double~valued; this latter holds
if Pii1 = Ppjsr- If the eigenvalue Py is simple and Pgry < Py}+1» then its correspon-
ding eigenfunction of the operator 5 is
ax Pt (cos §) | k=l
Po=® = b Pyt (cos k) h ay=0b (k2 +k—1—v)
If p, is double-valued, then its two corresponding eigenfunctions are @ and Qi1

2.7)

8, Construction of new equilibrium modes, Let us utilize the results
of [3] to construct new equilibriurm modes,

Theorem 1, Let Py be a simple eigenvalue of the problem (2.1), then:

(a) If k is even, then in each of the half-neighborhoods (p, — &, py) and (Pk«
Pir -+ &) one new solution branches off;

(b) If k is odd, then no new solutions originate .in one of the half-neighborhoods and
two solutions appear in the other,

Proof, Let py denote the eigenvalue of the problem (2.1) and A a small para -
meter, Then assuming

(1.6) can be written as
-1 5 0
By =3Cz+D(z), C= “ 0/2 0“ (3.1)

Here B, is the operator B in which p is replaced by the eigenvalue 0o. Let us seek
small solutions z (A) of (3.1). The operator By is found in the spectrum, and hence
has no inverse, Let us comstruct the operator B,

n
Bz = Byx + 2 (, Vi) gz

i=1
Here 7V, Z; have been determined from [3}, According to the generalized Schmidt
lemma, there exists an inverse linear bounded operator I' = B!, It is easy to see
that B, is a self-conjugate operator, and we can hence put ¥; = @;, where 1, is the
eigenvector of the conjugate operator, Let us take ¢; as Yi then to determine a,, b,
the equation

(@2 + b +1)2=1 (3.2)

is added to the second equation (2,4), Let us take the vector 2; in the form %, =

= {® (i + 1)® @.. When p, is a simple eigenvalue, we replace (3,1) by the
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equivalent system
le = le‘ + D (x) + Ko, p = (3'5 ?k)Es (3'3)
Let us seek the small solution Z = Z (A, @) of this system in the form of the series
2= 2zt + pt Dz, 2= B (8)y s (8)) (3.4)
i=m=1 i=g j=1

Substituting (3, 4) into the operator D (x), we obtain

D(z) = Dyuin’
(‘2) H_."Z;,g ‘Up (3.5)
Dy; = Z a {e* (v — 3) BmBpx + Bmeaxt BoxtPme) ctg &

BmiBpxctg &

oz =

Here @ = %/, if M ==p, { = k, and ¢ = 1 in the remaining cases, Substituting
(3.4) in the flrst equation of (3, 3), taking into account (3, §) and equating terms in
powers of WA/,, we obtain the recurrent system to find Zij

Bz = fin fn = 0, fry = Czy9 + Dy fro = 2 (3.6)

fao = Dyg, fao = Dso,...

Then- substituting (3, 4) in the second equation of the system (3, 3), we obtain the bifur~
cation equation - - o
S L+ D pt R Lud =0
Kweg 3 f=Y

Lij = (@5, Te)e, = (BiZi5, b, (3.7)

We find all the T; from (3, 6) taking account of (3, 5):
zo = 0, 210 = Ppy T = Tfips Zao = Thao
We now have for the L;; from (3,7)
Ly, = 0, Ly; = (Czyo, V)£ Lao = (Fa0s Ve )E, Lgo = (f30, Pr)x,

Let us write the coefficients L;; by utilizing the form Px» Wi TVx, 2
1 ¢ A i 3
L,= -5 ax® S Pyt (cos E) Py (cos §) sin 5dE = — 5 a;* <0

0
L]

Lyp= 4 S {62 (v — 3) ax® + 3a,2by} [Pl (cos £)]3 cos EdE

a

Ly = f {1e* (v -— 3) Bio Bao + Baoro + BroWsol Bro + BroBaoro} cosEdE  (3.8)
0

Here the ay, b, have been determined from (2.4), (3.2), It can be shown that
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” 0, if j isodd (3.9)
Spe={ [P (cos DI P (cos Heos§dt =1 0, if j>2%
° #0, if Jisevenand J<<2Kk

Now let & be even, then it follows from (83, 8), (3.9) that [, o0 5= 0, Ly < 0, and the
bifurcation equation (3, 7) has the form

Lzopa + Lul + e = 0
Hence

p=—Ly/Lyh+o(

The asymptotic representation of the solution (3, 4) is written as
T = ~— LllL’o-lxlox + Lu’L,o"’a:,okz —_— LnL,o-la:nK’ (Irl < %) (3.10)

Then one small solution originates in the half-neighborhood (py — &8, p,) and (ox
px -+ 8) . Let k be odd, then if follows from (3, 8), (3, 9) that Lyo =0, Ly, 5= 0,
L,, < 0, and the bifurcation equation (3, 8) becomes

Lyou® + Lypr + (*) =0

Hence
p =+ (—Lypls™ V)% + 0 (W)
In this case the asymptotic representation of the solution (3,4) is

z = o (— Ly sy M2 2y — LyyLag™ @b = (— LyyLog  A)rzyyh (1A 1<)
(3.11)

Depending on the sign of the ratio — Ly / Lyy no new solutions will origifiate in one
of the half-neighborhood (ox — 6, ps) and (0%, px + 8), and two new solutions will
appear in the other one, In the case of the minimum eigenvalue Pr = P4 , it can be
indicated in precisely which half-neighborhood the pair of new solutions originates,

Theorem 2, Let p, = p, and let } be odd, then two new solutions originate in
the half-neighborhood ( px — 6, p.) .

Proof, We obtain Ly, << 0 from (3, 8) and the Courant minimax principle [10]
by using (3, 5), (3.6), The solution (3,11) is real if — L, L4072 A > 0, iie. A << 0.

Theorem 3, If the minimum eigenvalue Px of the problem (2,1) is double~
valued, then three new solutions will originate in each of the half-neighborhoods (px —
— 8, pi) and (P2, px + 6).

Proof, Let Py = Px = P; be double~valued, This holds when

E=[k+Ek—-1—v{@+j—1—wv2
Let us replace (3,1) by the equivalent system
Byx = ACz + D (2) 4+ myz; + wozs, pa = (2, V)£ B = (T, YE, (3.12)

Let us seek small solutions £ = Z (A, Wy, Wg) of this system in the form of the series
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Z = Tggh - Zygo Uy + Logolts + Z Tinm W' pe"A™ (3.13)

n-mz2

Linm = (Binni (8), Vinm (8))

Let us assume that j and k have different parity (precisely such a case is possible for
the least eigenvalue), For definiteness, let j be odd, Analogously to the preceding, we
obtain the bifurcation equation
Dy (1, por A) = Liggiad + Lygopabia + 05 (A g1y o) =0
@y (p1r Moo M) = Lonptad + Logope® + Lago t* + 03 (A pyy po) =0
Ly = — Y a, Loy = — Yy ai?, Lyye = 2L3ee
Low =5 | {67 (v = 3) 0 - 36,2b,} [P (cos )P cos di  (3.14)

Q
n

{e® (v — 3) a2ay+2a,a;b; + a;%y} [P;! (cos E)]* Pyt (coss) cos & dE

Ly

Luo =

..

<o

ord o5 (A, . po) >3

The quantities aj, ay, bj, by are defined in (2,4), (3.2). According to [3]'we elimi-
nate }; from (3,14) and solve the equation obtained for [e. Then substituting Ha(A),
we find P1(A). We finally have

b= oA +0 (), pe=8A+0() =123
@ =0, 6, = — LyyLoa™? 8, = 03 = — Lyg1 Ly
W = — W3 = [L200L101 (LonLuo - LozoLloL)]"”’ (LzooLno)—l

i.e,, three new solutions originate in the half-neighborhoods (p, — §, p;) and f{p,,
0: -+ §)whose asymptotic representation is written as

z; = 0;@h + 608k T~ 0 (A) (=123 (3.15)

The following theorem permits a judgment on the behavior of a shell as the parameter
A changes in the neighborhood of o,
Theorem 4, IfA & (P4, P4 + 0), then the energy functional £ (p) << 0. If
A= (py — 8. p,)then E (p) > 0, while the functional £ (p) = v at the trivial
solution x = (0, U) . This theorem follows easily from (3,10), (3.11), (3.15) and the
form of the energy functional, It can also be shown that the trivial solution for the value
p << Px realizes the minimum of the potential energy (the second variation is pos-
itive) and is therefore stable, The proof of this fact is carried out by using the reasoning
from [11], '

Formulas (3,10), (3,11), (3,15) were utilized to construct bifurcation equilibrium
modes, The computation of the coefficients of the bifurcation equation in the mentio-
ned formulas was performed on an electronic computer, The integral (3, 9) was calcu-
lated by recursion formulas which are easily deduced from [12]
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2 —1 :
Sik = ;_1 (Uji — Vi) —7—__]“1 Siok Sox =0
Uy, = 4nt [" (6 — & + ‘/e>]'l (! T (s —j + %)
(t—k)! =7+ INT @+ %)
Vi = g [ 4) LEZRL T (=0 — T te— o
o= |k (E 1) =y C— A DTG T %
J=2, ]2, s=k-+i t=s—1

The computations were performed for values of ¢ in the interval 1 x 10-* e < 4.3x
x 10-2, Below, for example, we present values of the bifurcation coefficients for each
of three cases, The first two from Theorem 1 and the last from Theorem 3

e= 0.919 x 102 0.294 x 102 0.841 x 10-3 0.463 x 1C-3
Ly =-—0.413188 x 10~ —0.427478 x 10-% —0.353082 x 10-®  —0.106962 x 4C-*
Ly= 0.183134 x 107 0.260063 x 10-* 0.242242 x 101 0.258120 x 10-2*
e= 0.113 x 07 0.328 x {0-* 0.892 x 10-® 0.483 x 10-3
Ly = —0.617206 x 10~ —0.533977 x 10-5 —0.397177 x 10-¢ —0.14668y x 1C-®
Lap = —0.312538 x 10~% —0.116177 x 10-¢ —0.336578 » 10-% —0.629584 x 1C-®
e= 0.839 x 10-* 0.310 x 10~ 0.847 x 107 0.473 x 10~
Liy = —0.286044 x 104 —0.533977 x 10~ —0.314941 x 10~  —0.116680 x 10-¢
Loy = —0.413188 x 10~ —0.427478 x 105 —0.353082 x 10"  —0.106968 x 10°¢
Lue= 0.232177 x 1077 0.686889 x 10~* 0.419973 x 1012 0.575527 % 40-7
Logo = 0.183391 x 107 0.259981 x 10-° 0.242254 x 10™1 0.258115 x 1071

Let us note that values of P’ (0) and ¢’ (0), which can be utilized as initial param-~
eters to find solutions by the Runge-Kutta method, are now easily calculated from (3,10),
(3.11), (3.15).

The authors are grateful to V. I, Iudovich and V, A, Trenogin for aid and attention to
the research,
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General relationships and variational theorems in the theory of small elastic
deformations of an elastic solid, superposed on a finite deformation, are pres -
ented, A relationship is established between the two modes of the equilibrium
equation: in the metric of the undeformed state, and in the metric of an initially
deformed state of the solid, A formula is obtained from the potential energy
accumulated in an elastic prestressed solid for a small deformation, Variational
principles, analogous to the variational principles of the theory of finite deform-
ations {1] and differing from the variational theorems of classical theory of
elasticity by the nonsymmetry of the dual tensors, are formulated,

A generalization of the Clapeyron and Betti theorem to the case of small de-
formations of a prestressed elastic solid is obtained, The formulated variational
principles refer, in particular, to the problem of bifurcation of equilibrium of
a nonlinearly elastic solid.

Let v be a volume occupied by an elastic solid in an undeformed state, and V* the
volume it occupies after deformation caused by mass forces K° and surface forces F*

(F° is the vector of forces per unit area of the undeformed solid).
An equilibrium state given by the radius vector of a point of the deformed solid

R =R+ 1w





