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The question of new equilibrium modes of a uniformly compresses closed elastic 
spherical &ll for loading values close to the critical one is considered for which 
the membrane state of stress loses stability. The problem [l] reduces to cons- 
tructing solutions branching off from the trivial solution in the neighborhood of 
the bifurcation point, for the equations in @& The investigation is carried out 
by the Liapunov-Schmidt method for a broad class of operator equations in 
Banach space @$ 

The author of [4, S] used the aurlytical Liapuuov-Schmidt method earlier to 
construct new equilibrium modes in the case of plates and shallow shells. The 
problem of the bifurcation of the trivial solution of a shallow spherical segment 
by the Poind method was investigated in fl], where meridian stress resultants 
in equilibrium with the uniformly distributed surface pressure are given on the 
edge, whereupon a membrane equilibrium mode always exists. For the problem 
of an uniformly compressed closed sphere when the spectrum is simple, the be- 
havior of the solutions in the neighbo&od of the bifuroation point has been 
studied in p] numerically on a computer by using the method of “adjustment”. 
The survey [B] is devoted to this same problem. 

1. Formulation of thr problem. The Reissner equations for axisymmetric 
elastic deformation of a closed s-u1 shell subjectad to uniformly distributed prcs~- 
ure p3] are considered in dimeudonless form 

9 {(O - Cp,)” + otg E (a - Cp,)’ - g (sin CI, - sin CDs) + (j-1) 
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+ v sin aoT’ - (sin’ b)‘} + [“” ;Gt;” ub + MI+,’ m$$!] T - VP cos a0 

with the boundary conditions 

N (0) = N (n) = 0, cp (0) = 0, 0 (a) = II (1.2) 

Equations (Ll), (1.2) are obtained from (28), (29) in @] if the influence of the trans- 
verse shear is neglected and the following relationships are used 

E 

YE = NRrEe, ‘YV T = tree - = -&~Ssin~d~ CD,= E, a= R 

PH = @~a, pv = qEye, r = i sin f, 2= - RGOSE 

8 = WRY, ye = 12 (1 - va), p = - p sin E, q = pcos f 
(1.3) 

Here d) (g) is the angle which a shell element makes with the horizontal axis after 
deformation at the point corresponding to E ; la, W v and pa, pv are, respectively, 
the horizontal and vertical stress and loading componena, E is the Young modulus, Y 
the Poisson ratio, h = const is the shell thickness, and R the radius of the sphere. 

The problem (1.1). (1.2) has a trivial solution corresponding to the membraue state 
of stress for any values of the loading Q 

cb = f, N = - l/r p sin 2 Fr (O<I;<n) 

Hence, it is convenient to make the substitution 

d, = p + f, N = 9 - l/e p sin 2 t 

Since the new equilibrium modes are sought close to the membrane mode, it is then 
natural to assume the quantfty p small and to neglect terms above the second order in 
p in (1.1). (1.2). We hence obtain the equations 

es{-@ + (1 -v>B}+l/spB-$==l/s Ea(v-33)82ctg~+Ippctg~- 
- {A$’ + (1 + $‘$} - g = l/s fi” ctg E 

Aq s q” + ctg 5 q’ - sinVa E q (q -P91p) (1.4) 
with the boundary conditions 

B (0) = B (n) = 9 (0) = II, tn) = 0 (1.5) 
A number of the solutions branching off in the neighborhood of the bifurcation points 
of the problem (1.4) (1.5) is determined below, and asymptotic expansions are con- 
structed for each of them (Theorems 1 - 3). This number will fluctuate between zero 
and three as a function of the multiplicity of the spectrum of the linearized problem. 

Let us introduce the Hilbert spaces: 
1) The space El consisting of the closure of the set of smooth vector functions 

rz(B7 $) satisfying the boundary conditions (1.5) with the finite norm 

II d& = [ sin 5 WW + (44*1 dt 

2) The space E, of vector functions u s (ul, us) with the finite norm 



796 M.Iu.Zhukov and L.S.Srubshchlk 

Then the problem (1.4). (1.5) can be written in the form of the functional eauation 

Bx = D (4 (1.6) 

Here B is a linear, and D (x) quadratic operator from El and Es 

B 
// 

e*{A+1 - VI + ‘/*P, -1 
= 

-1 t - {A + 1+ v) I/ 

D (5) = I I/* 82 (v - 3) P” ctg E + 99 ctg E 1 

‘I2 P’ctg 5 I 

The possibility of writing the problem (1.4). (1.5) in the form (1.6) follows from the 

estimates 

These estimates follow from the analysis of the problem 

4 =f, B (0) = B (N = 0 

written in entegral form, and t!‘te application of the Cauchy-Buniakowski inequality. 

2. Invrrtigrtfon of the llnerrirrd problem. Let us consider the 
linearized problem 

Bx = 0 (2.1) 

in the neighborhood of the trivial solution x = (0, 0) of (1.6). The eigenfunctions 
of the problem (2.1) are sought in the form 

i3 = jra,P,L (co3 EL 9 = ~&P,r (coa E) (2.2) 

Here Pk (cos %) are the associated Legendre polynomials forming a complete orthonor- 

ma1 system [9]. To determine a,, 6, we substitute (2.2) into (2. l), multiply by 

Y,’ (con %), integrate with weight sin % between 0 and ,JC taking account of the 

relationship 

AP,l (cos %) = - 1; (k: + 1) Pk1 {COS 5) 

and obtain the system 

(E2 I- m (m + I) + I - VI + li2 p} a,, - b, = 0 

--a, - [ - m (m + 1) + 1 + ~1 b, = 0 (/,a = 1, 2,...) 

(2.3) 

(2.4) 

Equating the determinant of the system (2.4) to zero for each m, we obtain the eigen- 
values of the problem (2.1) 
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p = 2.~5~ (mZ + m - 1 + Y) + 2/(m2 + m - 1 - v) 

We find the least eigenvalue 

cm = 1,2,. . .) (2.5) 

p* = mm @II), pfII+r ) = 48 $ 4ve2 (2.6) 

for fixed E and Y . Here [11 denotes the integral part of the number 1 satisfying the 

relationship 
12 -+ 1 = e-r + 1 f, v, l> 0 

It is seen that the eigennumbers p+ can be simple and double-valued; this latter holds 
if PIi] = pIll+r. If the eigenvalue p* is simple and pl[I C p[-]+l, then its correspon- 

ding eigenfunction of the operator b’ is 

akP/c' (cos E) /j 

i 

k = 111 
‘p* = (P/g = 

b,W (~0s 5) ak = bl, (k2 + k - 1 - Y) 
(2.7) 

If p* is double-valued, then its two corresponding eigenfunctions are 9, and Q+r. 

3. Construction of new equilibrium modca. Let us utilize the results 
of p] to construct new equilibrium modes. 

Theorem 1. Let pk be a simple eigenvalue of the problem (2.1). then: 

(a) If k is even, then in each of the half-neighborhoods (pk - 6, prc) and (p#c 

ph. + 6) one new solution branches off; 

(b) If k is odd, then no new solutions originate .in one of the half-neighborhoods and 
two solutions appear in the other. 

Proof. Let ps denote the eigenvalue of the problem (2.1) and h a small para - 
meter. Then assuming 

P = PO -!- A, lkl < 6 

(1.6) can be written as 

B,x = KS + D (x), (3.1) 

Here B, is the operator B in which p is replaced by the eigenvalue po. Let us seek 

small solutions 2 (A) of (3.1). The operator Bo is found in the spectrum. and hence 
has no inverse. Let us construct the operator Bs 

* 

Here YL, 2~ have been determined from 133. According to the generalized Schmidt 
lemma, there exists an inverse linear bounded operator r = B;‘. It is easy to see 
that B, is a self-conjugate operator, and we can hence put tpi = vi, where 9, is the 
eigenvector of the conjugate operator. Let us take ‘Pi as Yi then to determine a,, bi 
the equation 

(a‘* + bi2) i’(i + I)’ = 1 (3.2) 

is added to the second equation (2.4). Let us take the vector Zi in the form zi = 
= i2 (i + i)2 (p;. When pk is a simple eigenvalue, we replace (3.1) by the 
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equivaicnt system 

23,s = hCx -f- Li @) + pkt p = @t Ykhs (3.31 

Ia us seek the small soiution x = X (A, p) of this system in the form of the series 

x= i %OcL" + 5Pi ix*&'9 9j--” (Pij(E)t $tj (E)) (3.4) i-1 i=-0 j=r 

Su~ti~~g (3.4) into the operator D (Lz), we obtain 

(3.5) 

Here a = l/s if m = p, t = k, and u = 1 in the remaining cases. Substituting 
(3.4) in the fixat equation of (3.3), takiag into a-t (3.5) and cquatfng terms in 
powers of P’u, , we obtain the recurrent system to find Xij 

&Q = filt fox = 0, fix = cxl@ + &t &l = zk (3.6) 
f so = hot fat, = Dso,... 

Them subspmting (3.4) in the second equation of the system (3.3). we obtain the bifur- 
cation equation 

(3.7) 

We find all the Xi from (3.6) taking account of (3.5): 

x01 = 0, %l = (Pkt %I = l-fit, % = %tO 

We now have for the L~J from (3.7) 

L 01 = 0, L,, = (c&o, &)I.&, &O =(fao, $,r)&? &W = (f30, ~kb& 

Let us write the coefficients Lit by utikdRg the form %) %v Yr, zk 

Here the ak, bk have been determined from (2.4). (3.2). It can be shown that 
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0, if j is odd (3.9) 
S R = 1 [ Pkl (cos E)12 P$ (cos 5) cos E dg = 0, if j > 2k 

0 
#O, if i is even and jG2k 

Now let k be even, then it follows from (3. S), (3.9) that ,&, + 0, & ( 0, and the 
bifurcation equation (3.7) has the form 

L,& + LJ + **a = 0 

Hence 

P = - LJL*,-'~+m 

The asymptotic representation of the solution (3.4) is written as 

5 S - &J&-lx,?V + L&s,-sx& - LlL3o"~l1~' (l11I<Q (3.10) 

Then one small solution originates in the half-neighborhood (pk - 6, prc) and (pr , 
Pk + 6) l 

Let k be odd, then if follows from (3.8). (3.9) that L,, = 0, L,, # 0, 
LI1 < 0, and the bifurcation equation (3.8) becomes 

L,,p’ + Ll& + (*I = 0 
Hence 

p = * (-LllL90-1 h)‘la + 0 (Iby 

In this case the asymptotic representation of the solution (3.4) is 

5 = * (- L,,L,,-1 A)‘/* q. - LllL9o-1 3& + (- LIIL,o-~ A)‘/% x,,h (I h I < 8) - 
(3.11) 

Depending on the sign of the ratio - 
of the half-neighborhood bk 

Lu/ &IO no new solutions wiII origihate in one 
- 6, Pk) and (pk, pk + 6) , and two new solutions will 

appear in the other one. In the case of the minimum efgenvalue pr = P* , it can be 
indicated in precisely which half-neighborhood the pair of new solutions originates. 

Theorem 2. Let ph = p* and let k be odd, then two new solutions originate in 
the half-neighborhood ( pk - 6, pk) . 

Pro o f. We obtain L,, < 0 from (3.8) and the Courant minimax principle [lo] 
by using (3.5). (3.6). The solution (3.11) is real if - L,,L,o-l h > 0, i. e. h G 0. 

Theorem 3. If the minimum eigenvalue pk of the problem (2.1) is double- 
valued, then three new solutions will originate in each of the half-neighborhoods (pk - 
- 6, Pk) and (Pkr Pk + 6). 

Proof. Let PO = pk = pj be double-valued. This holds when 

Es = [(k” + k - 1 - Y) (j2 + j - 1 - v)]-1 

Let US replace (3.1) by the equivalent system 

BIx = ACX + D (X) + &zj + bzk, p1 = (z, Yj)&, h = (5, Yk)Ex (3.12) 

Let us seek small solutions 5 = x (h, p1, ILg) of this system in the form of the series 
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Let us assume that i and k have different parity (precisely such a case is possible for 
the least eigenvalue). For definiteness, let 1 be odd. Analogously to the preceding, we 

obtain the bifurcation equation 

% (111, P% A) = LHJll”& + &,o&Ps + 03 tJV IL19 P2) = 0 

@r (1119 IL27 A) f Lo,& + ~,2,p2* + L200 CL12 f 02 (A* PI* P.2) = 0 

L 101 = - l/a q2, L 011 = - ‘I2 ak2, L 110 = &to 

L i 
O’LO = 2 c {E” (Y - 3) aii3 -!- 3ai;z b,tj [ Ph.1 (cos E)]” cosg cd; (3.14) 

. 

Ll10 = j {@(v - 3)O.. 2 a,2ahf Ukajbj f Uj*br} [Pj’ (COS E)]’ Pkl (COS;) CO3 j d$ 

i 

The quantities aj, ak, bj, 61, are defined in (2.4). (3.2). According to [3] we elimi- 

nate Pl from (3.14) and solve the equation obtained for ps. Then substituting ps(i), 
we find c11@). We finally have 

111 = @. + 0 (Ql p2 = 0ih + 0 (h) (i S 1, 2,s) 

01 = 0, 8, = - LOllLO& e? = e3 = - L,olLlzo-l 

0% = - 03 = ~L20&101 (LOllLllO - LO?OL1”l)~‘~z (L*ooL,,,)-’ 

i.e., three new solutions originate in the half-neighborhoods (pi, - 6, Pk) and (p, , 
Pa + 6) whose asymptotic representation is written as 

Si = W*qjh + @i@JJ + O (h) (i = 1,2,3) (3.15) 

The following theorem permits a judgment on the behavior of a shell as the parameter 
h changes in the neighborhood of p* 
Theorem 4. Ifh E (p*, p* f 6), then the energy functional E (p) < 0. If 

~~&Y-- 6. p&hen B (P) > 0, while the functional 6 (p) E U at the trivial 

solution z - (0. 0) . This theorem follows easily from (3. lo), (3. ll), (3.15) and the 
form of the energy functional. It can also be shown that the trivial solution for the value 

P< P* realizes the minimum of the potential energy (the second variation is pos- 
itive) and is therefore stable. The proof of this fact is carried out by using the reasoning 

from [ll]. 
Formulas (3.10). (3.11)‘ (3.15) were utilized to construct bifurcation equilibrium 

modes. The computation of the coefficients of the bifurcation equation in the mentio- 

ned formulas was performed on an electronic computer. The integral (3.9) was calcu- 
lated by recursion formulas which are easily deduced from [12] 
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sj,. E 2f - I 
L -_1 t"ji; - vjh.) - & hr)-2,k, Sok = 0 

I 

uj, ~ hnn-l 1‘ (S - 1s + ‘/2) 
1 1 

2 (t + I)! r (s - j + si~) 
(t - k)! (t - j + I)! r (t + “/t) 

Vjk = ‘/4K1 
[ 
k (k + 1) r (t - If + ‘/z) (s - /i)! 1 2 j (I - 1) (s - 1)! r (t - j + 2,/z) (s - j + I)! r (s + Y/s) 

I ’ = 2i, j <2k, s = k + i, t = s - 1 

The computations were performed for values of E in the interval 1 X IO-* < a \( 4.3~ 
x 10-s. Below, for example, we present values of the bifurcation coefficients for each 
of three cases. The fit two from Theorem 1 and the last from Theorem 3 

ti= 0.919 x 10-t 
L ,1=-0.4i3188 x 10-d 
L%J= 0.183134 x lo-’ 

c= 0.113 x 0-i 
Lll = -0.617296 x l@’ 
&,= -0.312538 X 1W 

0.294 x 10-g 
-0.427478 x 10-s 

0.260963 x lo-’ 

0.328 x 19-s 
-0.533977 x lo-5 

-0.116177 x IO-’ 

e = 0.839 x 10-s 0.310 x io+ 
Lm = -0.286944 X lo-( -0.533977 x 10-5 
Loll= -0.413188 x 1W -0.427478 x IO-5 
Lno = 0.232177 x lo-’ 0.686889 x 10-D 
Los0 = 0.183391 x lo-’ 0.259981 x 10-e 

0.841 x 10-a 
-0.353082 x 10-e 

0.242242 x IO-” 

0.892 x 10-s 
-0.397177 x 10-S 
-0.336578 Y 1W’ 

0.817 x lO-3 
-0.314941 x 10-e 
-0.353082 x IO- 

0.419973 x lo-” 
0.242254 x lo-” 

0.463 x 1p3 
-0.1069fi9 x lc-R 

0.258120 x lo-‘” 

0.483 x lo-8 
-0.116689 x lC6 
-0.629584 x lcce 

0.473 x 10-3 
-0.116689 X lo-6 
-0.106969 x 10-e 

0.575527 x lo-‘* 
0.258115 x lO-1z 

Let us note that values of fl’ (0) and $’ ((I), which can be utilized as initial param- 
eters to find solutions by the Runge-Kutta method, are now easily calculated from (3.10). 
(3.11). (3.15). 

The authors are grateful to V.I. Iudovich and V. A. Trenogln for aid and attention to 
the research. 
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General relationship and variational theorems in the theory of small elastic 
deformatiom of an elastic solid, superposed on a finite deformation, are pres - 
ented. A relationship is established between the two modes of the equtlibrium 
equations in the metric of the undeformed state, and in the metric of an initially 
deformed state of the solid. A formula is obtained from the potential energy 
accumulated in an elastic prestressed solid for a small deformation. Variational 
principles, analogous to the variational principles of the theory of finite deform- 
ations Cl] and differing from the variational theorems of classical theory of 
elasticity by the nonsymmetry of the dual tensors, are formulated. 

A generalization of the Clapeyron and Betti theorem to the case of small de- 
formations of a prestresaed elastic solid is obtained. The formulated variational 
prinapb r&r, in particular, to the problem of bifurcation of equilibrium of 

a nonlinearly elastic solid. 

Let u be a volume occupied by an elastic solid in an undeformed state, and p the 
volume it occupies after deformation caused by mass forces K” and surface forces F” 
(F” is the vector of forces per unit ruea of the undeformed solid). 

An equilibrium state given by the radius vector of a point of the deformed solid 

R=RO+qw 




